Engine Starts and Soaks Data Collection and Analysis

D. James, V. Vasudevan, P. Xi, D. Chan, A. Markham
 UNLV Civil & Environmental Engineering
 Clark County Air Quality Forum – 8 Nov 2005

Goal of study

- Develop <u>local input files</u> for <u>amount</u> and <u>distribution</u> of engine starts and soaks
 - To be used in EPA MOBILE6.2 emissions model
 - Local input files replace national defaults to generate more accurate mobile source VOC, NOx and CO emissions estimates

MOBILE6.2 model inputs

How MOBILE 6.2 outputs used

Project phases & status

- Pilot Studies: October & December 2004
- Random study: 500 contacts -> 133 participants: February-April 2005
- Corporate/RTC: 216 participants: November,'04-May. '05
- Data reduction, analysis and report June '05present – report now being written

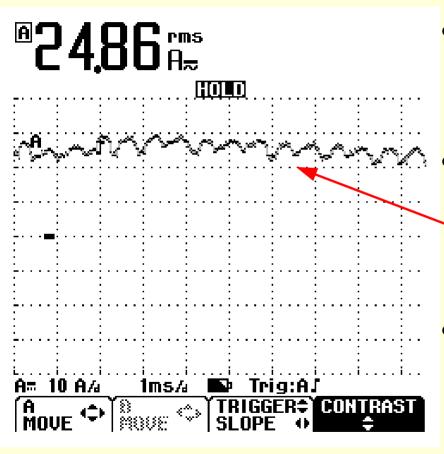
Participant classifications

Participant type	Number	Proportion
Random digit dialing	133	38%
Government	34	10%
Corporate, other private	161	46%
UNLV	21	6%
Total	349	100%

Summary: Random sample comparison to census

Category	Comparison (statistical tests for signature) rates	nificance not yet andom vs census
Age	Lower proportion 18-34	(11% vs 28%)
	Higher proportion: > 60	(39% vs 27%)
Employed	Slightly lower proportion employed	(65% vs 67%)
Gender	Slightly larger proportion female	(54% vs 49%)
Employment	Higher professional services	(29% vs 11%)
categories	Higher education/healthcare	(19% vs 9%)
	Lower government	(5% vs 11%)
	Lower hotel/gaming	(14% vs 33%)

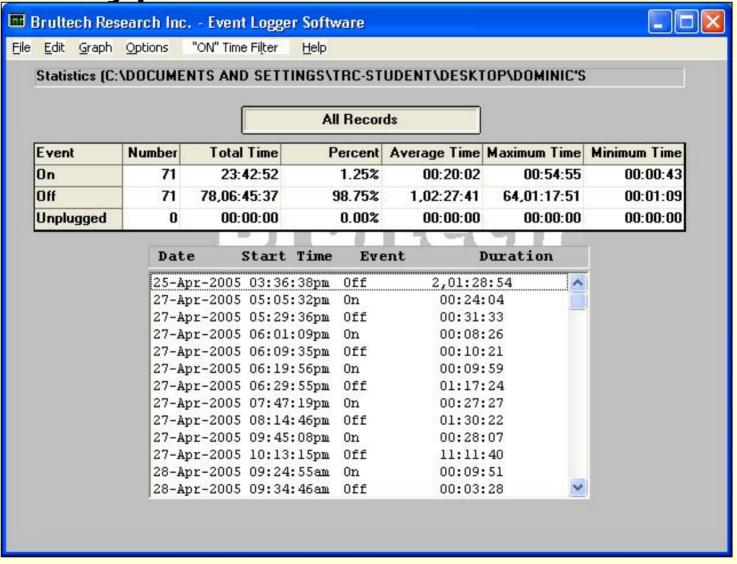
Fleet composition in study


- Surveyed in this study
 - Privately-owned gasoline powered
 - passenger cars and
 - light "trucks" pickups, vans, SUVs
- Not surveyed in this study
 - Privately owned diesel vehicles
 - Fleet vehicles
 - Taxis, delivery vehicles, rental-cars, motor pools
 - Buses and heavy trucks
 - Off-road equipment

Where the sensor goes – 12v power tap/cigarette lighter

12v outlet

How start sensor works


Some 12V outlets "off" & others "on" with key off

Sensor detects "ripple" in alternator output when engine running

 Sensor filters out smaller stray radio spikes

http://www.autolabscopediagnostics.com/alt.html - accessed 11/7/05

Typical sensor data file

Terminology

- Start Engine "on" event exceeding 30 seconds
- Soak initiated by engine "off" event

Pollutant	СО	NOx	VOC
Start & run emissions	XX	XX	XX
Soak emissions			XX

Example graph: one-day start record

Typical commuter start/soak activity pattern - 3 starts/day

Sensor data processing

- "Start" definition EPA
 - Early 1990's EPA study Spokane, Baltimore, Richmond
 VA
 - Start defined as any Key-on event with a duration greater than 30 seconds
 - Key-on events < 30 seconds screened from EPA database
- UNLV-RTC study
 - Calibrated all 120 Brultech sensors to factory specs
 - Applied same 30-second event-screening criterion as EPA
 - Tested validity of 30-second event screen using 9-car, 85 event-day sample comparing Brultech to digital OBD II sensors
 - 30-second filtration of Brultech data gave best match to OBD-II sensor data.

Data processing - I

Brultech software - filter sensor data file to eliminate "false" events. Save as ASCII file (349 files)

Import to MS Excel® workbook Identify hot/cold, assign soak codes, develop daily summaries

Consolidate Excel® workbooks into MS Access® database (28,385 records)

Run Access® queries and macros classify starts/soaks into frequency bins Save to tables

Export Access®
frequency tables to
MS Excel®, calculate
frequencies

Format results for MOBILE6.2 input files and generate graphical outputs

Data processing II - Algorithm testing

Determine how to classify starts and soaks from EPA guidance documents

Write queries and macros in Access® - extract and classify starts and soaks data from database

Test queries on small file (single sensor for a week) & compare results to manual analysis of single sensor

Revise query or macro if needed, re-test until classification is correct

Run query, macro on entire target database file

Examine output and compare to US EPA 3-city study. Do the data make "sense"?

Compared to EPA 3-city study, Las Vegas shows, for Starts

- Fewer weekday starts /day cars, slightly higher weekend
- Fewer weekday & weekend starts /day light trucks
- Higher proportion early AM and late PM starts
- Higher proportion of short trips; lower proportion long trips

Starts/day summary – 1 hour cold start definition

	Las Vegas Hot Starts/day *1 hr soak Avg <u>+</u> std dev	Las Vegas Cold starts/day *1 hr soak Avg <u>+</u> std dev	Las Vegas Total starts/day *1 hr soak Avg <u>+</u> std dev	EPA default Total starts/day Avg
Weekday starts	Cars: 3.0 ± 3.5 Trucks: 2.6 ± 2.4	Cars: 2.6 ± 1.3 Trucks 2.8 ± 1.5	Cars 5.5 <u>+</u> 3.9 Trucks 5.5 <u>+</u> 3.1	7.3 8.1
Weekend starts	Cars: 3.3 ± 3.8 Trucks: 2.4 ± 2.0	Cars: 2.4 ± 1.4 Trucks 2.3 ± 1.3	Cars 5.7 <u>+</u> 4.4 Trucks 4.7 <u>+</u> 2.5	5.45.7

Similar random & non-random starts/day — 1hr soak

	Las Vegas	Las Vegas	Las Vegas
	Hot Starts/day	Cold Starts/day	Total starts/day
	Avg <u>+</u> std dev	Avg + std dev	Avg + std dev
Cars	Random Dial:	Random Dial:	Random Dial:
	3.0 <u>+</u> 3.1	2.5 <u>+</u> 1.3	5.5 <u>+</u> 3.5
	Non-random :	Non-random :	Non-random :
	3.2 <u>+</u> 4.1	2.5 <u>+</u> 1.4	5.7 <u>+</u> 4.7
	All participants :	All participants :	All participants :
	3.1 <u>+</u> 3.6	2.5 <u>+</u> 1.3	5.6 <u>+</u> 4.0
Trucks	Random Dial:	Random Dial:	Random Dial:
	2.5 <u>+</u> 2.4	2.6 <u>+</u> 1.4	5.1 <u>+</u> 3.0
	Non-random :	Non-random :	Non-random :
	2.7 <u>+</u> 2.1	2.9 <u>+</u> 1.5	5.6 <u>+</u> 2.7
	All participants :	All participants :	All participants :
	2.6 <u>+</u> 2.3	2.7 <u>+</u> 1.5	5.3 <u>+</u> 2.9

WeekDAY start distribution Red – LV higher; Blue – LV lower

WeekEND start distributions Red – LV higher Blue – LV lower

■ EPA Weekend ■ LV Weekend

When do we drive?

Las Vegas engine Running & <2 hr soak activity

—■— Las Vegas running — ▲ — Las Vegas < 2hr soaks

Las Vegas weekDAY trip lengths

trip length (min)	<10	11-20	21-30	31-40	41-50	50+
Hour	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
6	36.7%	29.5%	19.9%	11.4%	2.2%	0.4%
7	35.0%	32.8%	20.2%	8.0%	2.0%	1.9%
8	39.7%	26.6%	21.3%	7.9%	2.4%	2.1%
9	49.1%	30.4%	13.0%	4.3%	1.1%	2.0%
10	56.9%	29.9%	9.1%	3.0%	0.5%	0.5%
11	60.9%	25.1%	10.3%	2.0%	0.8%	0.8%
12	63.2%	24.1%	8.0%	2.4%	0.8%	1.6%
13	56.2%	27.9%	9.6%	3.0%	1.5%	1.9%
14	57.8%	23.9%	12.5%	3.3%	1.4%	1.1%
15	50.1%	26.8%	14.3%	5.3%	1.6%	1.9%
16	44.7%	28.4%	15.9%	6.3%	2.8%	1.9%
17	45.4%	28.0%	14.5%	7.2%	2.9%	2.0%
18	48.5%	26.6%	13.8%	6.8%	2.4%	1.9%
24	52.7%	27.0%	12.9%	4.6%	1.3%	1.5%
average	49.8%	27.7%	14.0%	5.4%	1.7%	1.5%
std deviation	8.8%	2.5%	4.2%	2.7%	0.8%	0.6%

EPA weekDAY trip lengths

trip length (min)	<10	11-20	21-30	31-40	41-50	50+
Hour	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
6	14.9%	22.7%	29.4%	20.8%	12.2%	0.0%
7	16.1%	31.1%	40.0%	9.1%	3.8%	0.0%
8	14.6%	33.5%	18.4%	18.5%	3.0%	12.1%
9	27.4%	32.7%	22.2%	4.8%	0.0%	12.9%
10	28.5%	43.0%	17.1%	7.9%	3.6%	0.0%
11	32.9%	32.8%	15.0%	7.5%	5.3%	6.5%
12	33.4%	39.6%	15.2%	11.8%	0.0%	0.0%
13	28.9%	46.8%	13.9%	9.3%	1.1%	0.0%
14	27.1%	39.3%	18.3%	3.2%	1.4%	10.8%
15	26.8%	41.8%	24.3%	3.9%	2.2%	1.0%
16	24.9%	40.8%	18.8%	10.9%	1.8%	2.9%
17	21.1%	34.8%	29.4%	9.2%	5.4%	0.0%
18	26.8%	32.2%	25.1%	12.0%	3.1%	0.8%
24	21.0%	37.3%	24.5%	7.5%	6.4%	3.4%
average	24.6%	36.3%	22.3%	9.7%	3.5%	3.6%
std deviation	6.2%	6.1%	7.2%	5.0%	3.2%	4.9%

Las Vegas weekEND trip lengths

trip length (min)	<10	11-20	21-30	31-40	41-50	50+
Hour	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
6	51.9%	33.3%	7.4%	0.0%	3.7%	3.7%
7	58.1%	21.0%	16.1%	1.6%	1.6%	1.6%
8	59.6%	25.0%	7.4%	2.2%	4.4%	1.5%
9	57.5%	27.8%	9.4%	3.3%	1.4%	0.5%
10	57.9%	30.2%	8.8%	1.8%	0.7%	0.7%
11	58.5%	24.0%	11.6%	4.7%	0.6%	0.6%
12	49.5%	31.0%	10.0%	5.2%	2.1%	2.1%
13	56.0%	24.7%	10.0%	5.4%	1.5%	2.3%
14	60.4%	23.8%	10.2%	2.3%	1.8%	1.5%
15	56.0%	28.3%	7.8%	3.6%	2.2%	2.0%
16	54.9%	26.6%	10.0%	4.1%	1.6%	2.8%
17	58.6%	25.1%	10.6%	1.5%	2.1%	2.1%
18	54.9%	25.6%	12.1%	3.3%	2.2%	1.8%
24	51.9%	24.8%	13.3%	5.0%	2.2%	2.9%
average	56.1%	26.5%	10.3%	3.1%	2.0%	1.9%
std deviation	3.2%	3.3%	2.4%	1.6%	1.0%	0.9%

EPA weekEND trip lengths

trip length (min)	<10	11-20	21-30	31-40	41-50	50+
Hour	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
6	19.0%	60.6%	20.4%	0.0%	0.0%	0.0%
7	26.9%	42.4%	30.7%	0.0%	0.0%	0.0%
8	20.6%	41.7%	18.8%	0.0%	18.9%	0.0%
9	29.8%	38.3%	23.1%	8.8%	0.0%	0.0%
10	25.6%	42.1%	16.6%	15.8%	0.0%	0.0%
11	27.6%	36.4%	13.3%	10.3%	3.4%	9.0%
12	25.9%	35.5%	28.6%	3.5%	6.5%	0.0%
13	18.4%	19.4%	22.5%	9.9%	4.3%	25.6%
14	23.7%	39.2%	12.3%	14.9%	9.9%	0.0%
15	21.2%	25.4%	25.5%	4.1%	0.0%	23.9%
16	25.7%	25.9%	12.3%	6.6%	15.0%	14.5%
17	24.3%	37.7%	27.3%	3.9%	0.0%	6.8%
18	18.0%	38.4%	18.3%	20.8%	4.5%	0.0%
24	15.7%	27.4%	15.7%	9.6%	2.6%	29.0%
average	23.0%	36.5%	20.4%	7.7%	4.6%	7.8%
std deviation	4.2%	10.0%	6.1%	6.4%	6.1%	10.9%

Compared to EPA 3-city data, Las Vegas shows, for Soaks

Soak length	Short	Medium	Long
Hot (< 1 hr)	Lower proportion		Lower proportion Higher AM
All (< 12 hr)		Lower prop weekday Higher prop weekend	
Diurnal (< 72 hr) soak activity	Lower proportion		Higher proportion

Weekday Hot

Comparison of 10min Hot Soak Duration

Time of day

Weekend Hot

Comparison of 10min Hot Soak Duration

Time of day

WEEKDAY Comparison of Soak Duration less than 1hr

Weekday All soaks

MOBILE6.2 soak distribution summary across hours of day

Data type and data file	Las Vegas result compared to EPA default
Cumulative soak length distribution	Weekday, <u>lower %</u> 1 hour soaks than EPA
Soakdst.d	Weekend, <u>higher %</u> 1 hour soaks than EPA
Cumulative soak length distribution	Weekday, <u>lower %</u> % soaks < 3 hours compared to EPA
Soakdst.d	Weekend, <u>higher %</u> soaks < 3 hours compared to EPA

Diurnal soak definition

 "Diurnal" soak is key-off period exceeding 2 hours during daytime

 Sunlight heats gasoline in vehicle – soaking emissions vary with daytime temperature

Diurnal soaks = "long" soaks

Overall diurnal – Las Vegas Iower than EPA until 9 pm

Diurnal soak activity

Las Vegas diurnal soak summary

Generally higher proportion <u>8-47</u> hour diurnal soaks

Soak hour	6_7AM	7_8AM	8_9AM	9_10AM	1 0 _11AM	11_12N	12_1PM	1_2PM	2_3PM	3_4PM	4_5PM	5_6PM	6_7PM
01	0.36%	0.57%	2.20%	9.03%	12.29%	10.01%	5.47%	4.50%	6.30%	8.37%	6.81%	5.88%	6.24%
12	0.72%	0.32%	0.43%	2.01%	8.40%	10.64%	7.75%	4.33%	3.55%	5.04%	6.67%	4.95%	4.65%
23	0.83%	0.60%	0.28%	0.44%	1.80%	7.42%	8.80%	6.03%	3.61%	2.66%	3.73%	4.88%	3.68%
34	1.83%	0.67%	0.55%	0.22%	0.43%	1.52%	6.36%	6.81%	5.32%	2.98%	2.05%	2.48%	2.78%
45	1.87%	1.59%	0.52%	0.57%	0.18%	0.37%	1.22%	5.63%	6.33%	4.57%	2.58%	1.45%	1.81%
56	3.41%	1.59%	1.38%	0.47%	0.52%	0.14%	0.28%	1.18%	5.23%	5.73%	4.01%	1.98%	1.23%
67	5.71%	2.82%	1.35%	0.94%	0.40%	0.40%	0.14%	0.23%	1.21%	4.72%	5.02%	3.23%	1.64%
78	7.62%	4.44%	2.11%	1.13%	0.70%	0.37%	0.36%	0.12%	0.24%	0.81%	3.42%	3.38%	1.92%
823	50.34%	42.83%	33.87%	24.39%	19.68%	15.47%	12.16%	10.39%	8.81%	7.21%	6.02%	5.63%	5.24%
24-47	5.86%	4.73%	4.16%	3.90%	3.48%	3.31%	3.22%	3.32%	3.28%	3.33%	3.33%	3.15%	3.68%
48-71	1.72%	1.46%	1.28%	1.26%	1.07%	1.04%	1.00%	1.15%	1.15%	1.16%	1.12%	0.98%	1.20%
72+	0.07%	0.00%	0.06%	0.03%	0.06%	0.06%	0.00%	0.00%	0.09%	0.00%	0.17%	0.05%	0.14%

EPA diurnal soak summary

Higher proportion short diurnal soaks

r													
Soak hour	6_7AM	7_8AM	8_9AM	9_10AM	10_11AM	11_12N	12_1PM	1_2PM	2_3PM	3_4PM	4_5PM	5_6PM	6_7PM
01	0.89%	2.26%	6.34%	16.68%	21.66%	11.00%	6.27%	5.19%	8.60%	7.94%	9.40%	11.33%	13.21%
12	0.71%	0.47%	0.40%	0.40%	2.17%	10.03%	11.36%	10.41%	8.11%	7.83%	5.79%	6.46%	7.89%
23	1.60%	1.03%	0.82%	0.76%	2.42%	6.29%	6.79%	6.89%	6.55%	6.29%	5.60%	5.66%	6.65 %
34	2.71%	1.72%	1.30%	1.14%	2.52%	4.51%	4.70%	5.00%	5.28%	5.02%	4.95%	4.69%	5.37%
45	3.92%	2.47%	1.81%	1.52%	2.53%	3.45%	3.49%	3.80%	4.26%	4.00%	4.17%	3.77%	4.22%
56	5.12%	3.24%	2.31%	1.87%	2.48%	2.75%	2.72%	2.98%	3.43%	3.18%	3.38%	2.97%	3.26%
67	6.21%	3.95%	2.76%	2.18%	2.39%	2.26%	2.18%	2.39%	2.76%	2.52%	2.67%	2.30%	2.49%
78	7.07%	4.56%	3.14%	2.43%	2.27%	1.89%	1.78%	1.94%	2.22%	2.00%	2.06%	1.76%	1.88%
823	56.64%	45.49%	34.48%	27.07%	18.26%	11.67%	10.08%	9.67%	8.80%	7.32%	5.59%	5.02%	5.24%
24-47	0.14%	0.42%	0.83%	1.17%	3.12%	3.91%	2.79%	1.52%	0.34%	0.21%	0.01%	0.02%	0.02%
48-71	0.00%	0.00%	0.00%	0.00%	0.04%	1.03%	0.63%	0.11%	0.00%	0.00%	0.00%	0.00%	0.00%
72+	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

When vehicles "on" or short soak

Running & "hot" soak activity

Study	EPA 3 city	CARB	Knoxville	Las Vegas
Sample size	245	96	377	349
Fleet type	Private car & light truck			
Weekday car start/day	7.3	7.1	5.7	5.5 <u>+</u> 3.9
Weekday truck start/d	8.1	n/a	6.2	5.5 <u>+</u> 3.1
Weekend car start/day	5.4	5.9	4.1	5.7 <u>+</u> 4.4
Weekend truck start/d	5.7	n/a	4.7	4.7 <u>+</u> 2.5

Numerical weekday summary

Item: Las Vegas compared to EPA 3-city study	Las Vegas	EPA
Fewer weekday starts/day	5.5c - 5.5t	7.3c - 8.1t
Mixed weekend	5.7c - 4.7t	5.4c - 5.7t
Weekday AM peak starts	7 am	8 am
Weekday PM peak starts	5 pm	3 pm
More short (< 10 min) trips	50%	25%
Fewer short hot soaks < 10	Mid-day 25%	Mid-day 32%
min; similar evening	pm 30%	pm 30%
Lower proportion of short (1-2hr) diurnal soaks	6%	8%
Higher proportion of very	5% 8-23	1% 8-23
long (8-47 hr) diurnal soaks	17% 24-47	9% 24-47

Why fewer starts and more short trips in Las Vegas? – our guesses

- Newer, more compact urban area more areas master-planned.
 - Shorter distances to services?
 - Convenient auto parking?
- Climate
 - more likely to use cars for short trips in hot weather?
- Demographics and mass transit infrastructure
 - low proportional use of public transportation?
 - "Car culture" habits of residents?

Speculation - What might this mean for mobile source emissions?

MOBILE 6.2 runs not completed yet!!

Fewer starts → Lower total emissions

More short trips → higher *proportion* of CO

Higher proportion long soaks → higher *proportion* VOC

More short trips → Lower *proportions* of NOx

Contact information

David E. James, PhD, PE

Associate Professor

Phone: 702-895-1067 Fax: 702-895-4401

Email: daveearl@ce.unlv.edu

Vinod Vasudevan, MS or Ping Xi, MS

Transportation Systems Analyst Graduate Research Assistant

Transportation Research Center Transportation Research Center

Phone: 702-895-1594 Fax: 702-895-4401 Phone: 702-895-4339

Email: vinodv@egr.unlv.edu Email: Ping_Xi@hotmail.com

Jerry Duke

Assistant Planning Manager

Regional Transportation Commission of Southern Nevada

Phone; 702-676-1500

Email: dukej@rtcsnv.com

Acknowledgments

- Financial and logistical support
 - Regional Transportation Commission of Southern Nevada
- Technical assistance
 - Clark County Dept of Air Quality and Environmental Management
 - Univ of Tennessee Knoxville Jerry Everett
 - US EPA Office of Air Quality Ann Arbor, MI
 - James Jusayan Las Vegas Valley Water District
 - Cover Image source: http://www.fraqmd.org Accessed 8/7/2005